Arginine methylation in subunits of mammalian pre-mRNA cleavage factor I.

نویسندگان

  • Georges Martin
  • Antje Ostareck-Lederer
  • Ashwin Chari
  • Nils Neuenkirchen
  • Sabine Dettwiler
  • Diana Blank
  • Ursula Rüegsegger
  • Utz Fischer
  • Walter Keller
چکیده

Mammalian cleavage factor I (CF I(m)) is composed of two polypeptides of 25 kDa and either a 59 or 68 kDa subunit (CF I(m)25, CF I(m)59, CF I(m)68). It is part of the cleavage and polyadenylation complex responsible for processing the 3' ends of messenger RNA precursors. To investigate post-translational modifications in factors of the 3' processing complex, we systematically searched for enzymes that modify arginines by the addition of methyl groups. Protein arginine methyltransferases (PRMTs) are such enzymes that transfer methyl groups from S-adenosyl methionine to arginine residues within polypeptide chains resulting in mono- or dimethylated arginines. We found that CF I(m)68 and the nuclear poly(A) binding protein 1 (PABPN1) were methylated by HeLa cell extracts in vitro. By fractionation of these extracts followed by mass spectral analysis, we could demonstrate that the catalytic subunit PRMT5, together with its cofactor WD45, could symmetrically dimethylate CF I(m)68, whereas pICln, the third polypeptide of the complex, was stimulatory. As sites of methylation in CF I(m)68 we could exclusively identify arginines in a GGRGRGRF or "GAR" motif that is conserved in vertebrates. Further in vitro assays revealed a second methyltransferase, PRMT1, which modifies CF I(m)68 by asymmetric dimethylation of the GAR motif and also weakly methylates the C-termini of both CF I(m)59 and CF I(m)68. The results suggest that native-as compared with recombinant-protein substrates may contain additional determinants for methylation by specific PRMTs. A possible involvement of CF I(m) methylation in the context of RNA export is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct roles of two Yth1p domains in 3'-end cleavage and polyadenylation of yeast pre-mRNAs.

Yth1p is the yeast homologue of the 30 kDa subunit of mammalian cleavage and polyadenylation specificity factor (CPSF). The protein is part of the cleavage and polyadenylation factor CPF, which includes cleavage factor II (CF II) and polyadenylation factor I (PF I), and is required for both steps in pre-mRNA 3'-end processing. Yth1p is an RNA-binding protein that was previously shown to be esse...

متن کامل

Protein arginine methylation facilitates cotranscriptional recruitment of pre-mRNA splicing factors.

Cotranscriptional recruitment of pre-mRNA splicing factors to their genomic targets facilitates efficient and ordered assembly of a mature messenger ribonucleoprotein particle (mRNP). However, how the cotranscriptional recruitment of splicing factors is regulated remains largely unknown. Here, we demonstrate that protein arginine methylation plays a novel role in regulating this process in Sacc...

متن کامل

The 68 kDa subunit of mammalian cleavage factor I interacts with the U7 small nuclear ribonucleoprotein and participates in 3′-end processing of animal histone mRNAs

Metazoan replication-dependent histone pre-mRNAs undergo a unique 3'-cleavage reaction which does not result in mRNA polyadenylation. Although the cleavage site is defined by histone-specific factors (hairpin binding protein, a 100-kDa zinc-finger protein and the U7 snRNP), a large complex consisting of cleavage/polyadenylation specificity factor, two subunits of cleavage stimulation factor and...

متن کامل

A multisubunit 3' end processing factor from yeast containing poly(A) polymerase and homologues of the subunits of mammalian cleavage and polyadenylation specificity factor.

Polyadenylation is the second step in 3' end formation of most eukaryotic mRNAs. In Saccharomyces cerevisiae, this step requires three trans-acting factors: poly(A) polymerase (Pap1p), cleavage factor I (CF I) and polyadenylation factor I (PF I). Here, we describe the purification and subunit composition of a multiprotein complex containing Pap1p and PF I activities. PF I-Pap1p was purified to ...

متن کامل

Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex

3' polyadenylation is a key step in eukaryotic mRNA biogenesis. In mammalian cells, this process is dependent on the recognition of the hexanucleotide AAUAAA motif in the pre-mRNA polyadenylation signal by the cleavage and polyadenylation specificity factor (CPSF) complex. A core CPSF complex comprising CPSF160, WDR33, CPSF30 and Fip1 is sufficient for AAUAAA motif recognition, yet the molecula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RNA

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 2010